Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181.

نویسندگان

  • Gallen B Triana-Baltzer
  • Rebecca L Sanders
  • Maria Hedlund
  • Kellie A Jensen
  • Laura M Aschenbrenner
  • Jeffrey L Larson
  • Fang Fang
چکیده

BACKGROUND influenza viruses (IFVs) frequently achieve resistance to antiviral drugs, necessitating the development of compounds with novel mechanisms of action. DAS181 (Fludase), a sialidase fusion protein, may have a reduced potential for generating drug resistance due to its novel host-targeting mechanism of action. METHODS IFV strains B/Maryland/1/59 and A/Victoria/3/75 (H3N2) were subjected to >30 passages under increasing selective pressure with DAS181. The DAS181-selected IFV isolates were characterized in vitro and in mice. RESULTS despite extensive passaging, DAS181-selected viruses exhibited a very low level of resistance to DAS181, which ranged between 3- and 18-fold increase in EC(50). DAS181-selected viruses displayed an attenuated phenotype in vitro, as exhibited by slower growth, smaller plaque size and increased particle to pfu ratios relative to wild-type virus. Further, the DAS181 resistance phenotype was unstable and was substantially reversed over time upon DAS181 withdrawal. In mice, the DAS181-selected viruses exhibited no greater virulence than their wild-type counterparts. Genotypic and phenotypic analysis of DAS181-selected viruses revealed mutations in the haemagglutinin (HA) and neuraminidase (NA) molecules and also changes in HA and NA function. CONCLUSIONS results indicate that resistance to DAS181 is minimal and unstable. The DAS181-selected IFV isolates exhibit reduced fitness in vitro, likely due to altered HA and NA functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Pandemic Influenza A(H1N1) Viruses Are Potently Inhibited by DAS181, a Sialidase Fusion Protein

BACKGROUND The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal infl...

متن کامل

Inhibition of Neuraminidase Inhibitor-Resistant Influenza Virus by DAS181, a Novel Sialidase Fusion Protein

Antiviral drug resistance for influenza therapies remains a concern due to the high prevalence of H1N1 2009 seasonal influenza isolates which display H274Y associated oseltamivir-resistance. Furthermore, the emergence of novel H1N1 raises the potential that additional reassortments can occur, resulting in drug resistant virus. Thus, additional antiviral approaches are urgently needed. DAS181 (F...

متن کامل

Antiviral Strategies for Pandemic and Seasonal Influenza

While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker...

متن کامل

Treatment of resistant influenza virus infection in a hospitalized patient with cystic fibrosis with DAS181, a host-directed antiviral.

We report a cystic fibrosis patient infected with influenza 2009H1N1 who had persistent viral shedding and clinical deterioration despite prolonged treatment with oseltamivir and zanamivir. The patient was diagnosed with H275Y neuraminidase inhibitor resistant influenza during treatment, thus was treated for 10 days with DAS181, an investigational host-directed inhaled sialidase fusion protein....

متن کامل

DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: an in vitro pharmacodynamic analysis.

OBJECTIVES The influenza virus (IFV) infection models commonly used to evaluate antiviral agents (e.g. MDCK cell line and mice) are limited by physiological differences from the human respiratory tract in vivo. Here we report the pharmacodynamics of DAS181, a sialidase fusion protein that inhibits influenza infection, in the model systems of well-defined human airway epithelium (HAE) culture an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2011